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Abstract

Advanced interpretation of hyperspectral remote sensing
images benefits many precise Earth observation tasks. Re-
cently, visual foundation models have promoted the remote
sensing interpretation but concentrating on RGB and multi-
spectral images. Due to the varied hyperspectral channels,
existing foundation models would face image-by-image tun-
ing situation, imposing great pressure on hardware and time
resources. In this paper, we propose a tuning-free hyper-
spectral foundation model called HyperFree, by adapting
the existing visual prompt engineering. To process var-
ied channel numbers, we design a learned weight dictio-
nary covering full-spectrum from 0.4 ∼ 2.5µm, support-
ing to build the embedding layer dynamically. To make
the prompt design more tractable, HyperFree can generate
multiple semantic-aware masks for one prompt by treating
feature distance as semantic-similarity. After pre-training
HyperFree on constructed large-scale high-resolution hy-
perspectral images, HyperFree (1 prompt) has shown com-
parable results with specialized models (5 shots) on 5
tasks and 11 datasets. Code and dataset are accessible at
https://rsidea.whu.edu.cn/hyperfree.htm.

1. Introduction
Hyperspectral imaging has been recognized by the Euro-
pean Union as one of the Top 100 Disruptive Technologies
[58], due to its ability to provide high-resolution spectral
data for precise Earth observation across diverse applica-
tions [64], including environmental monitoring [31], agri-
culture [69], and defense [20]. Unlike traditional RGB or
multispectral imagery, Hyperspectral imagery (HSI) offers
several unique features: high spectral resolution (typically
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Figure 1. Comparison of existing RSFMs with the proposed Hy-
perFree model. (a) The pre-training and tuning paradigm is the
mainstream approach, where fine-tuning is essential for handling
unseen HSIs. (b) The prompt engineering paradigm reduces the
tuning burden but struggles to handle HSIs with hundreds of spec-
tral channels. (c) HyperFree can directly process unseen HSIs
with varying channel counts without fine-tuning, and it can iden-
tify multiple masks of the same class using only a single prompt.

10 nm), an extensive wavelength range (400–2500 nm), and
dozens to hundreds of spectral channels [64], which enable
the detailed identification of diverse targets, while also in-
creasing the complexity of data processing and analysis.

Recently, remote sensing foundation models (RSFMs)
have demonstrated advanced interpretive capabilities, pri-
marily focusing on multispectral and RGB images [4, 7,
13, 25, 38, 49], while also opening new possibilities for
analyzing hyperspectral images. RSFMs follow two main



paradigms. The predominant paradigm is pre-training and
tuning (P-T), illustrated in Figure 1(a), which begins with
training a large-scale backbone model in a self-supervised
manner, such as masked autoencoders (MAE) [12], fol-
lowed by fine-tuning with task-specific heads for vari-
ous downstream applications [7, 13, 38, 49]. In the P-T
paradigm, both the pre-training and the fine-tuning stages
can be time-consuming. Second paradigm is prompt engi-
neering (P-E), as illustrated in Figure 1(b), which focuses
on designing task-specific prompts for a frozen Segment
Anything Model (SAM) [17] to directly perform down-
stream tasks without additional model tuning [4, 25], mak-
ing it more efficient and user-friendly in practical.

The P-E paradigm is particularly well-suited for pro-
cessing HSI, as it can be directly applied to diverse, un-
seen scenes without requiring model fine-tuning. However,
it faces two significant challenges when applied to HSI.
(i) The first challenge is the variation in spectral param-
eters across different hyperspectral sensors, including dif-
ferences in spectral resolution, wavelength range, and the
number of spectral channels [10]. For a P-T-based model
like HyperSigma [54], although it is pre-trained using HSIs
with fixed channels, the challenge can be addressed during
its tuning stage by rebuilding the channel embedding layer
to align the dimensions with the new data. But for a P-
E-based model, the challenge of channel variation requires
more careful consideration. (ii) The second challenge is to
make prompt input tractable, ensuring a P-E based model
can directly process unseen HSIs with least prior knowl-
edge. Specifically, most existing P-E-based RSFMs rely on
a frozen SAM [17], which segments remote sensing objects
based on specialized models to generate prompts [4, 25]. As
shown in Figure 1(b), each prompt typically generates a sin-
gle mask and all the prompts for target objects are needed
by existing P-E-based RSFMs, which largely reduced the
model feasibility.

To address the above challenges, as shown in Figure 1
(c), we propose a channel-adaptive, tuning-free hyperspec-
tral foundation model, called HyperFree, which can process
any unseen HSIs directly in a P-E manner. Specifically, (i)
Motivated by the word dictionary in natural language pro-
cessing, which stores vector embeddings as values corre-
sponding to words and phrases of varying lengths as keys
[32], HyperFree introduces a learnable wavelength weight
dictionary in the embedding layer, spanning the 400 to 2500
nm spectral range in 10 nm intervals. This allows for the
dynamic encoding of unseen HSIs with varying spectral pa-
rameters into visual tokens, all with consistent dimension-
ality. (ii) To make the prompt of HyperFree more tractable,
HyperFree is designed to generate multiple semantic-aware
masks for one prompt as in Figure 1 (c), where HyperFree
maps each prompt and single mask from image space into
feature space and treats the feature distance as semantic-

similarity. Prompt, mask and feature are interacted adap-
tively for different downstream task in tuning-free manner
with only one prompt or zero shot.

Due to the high acquisition cost and label difficulty, cur-
rent hyperspectral datasets only have a few images [45, 69],
far from the requirements to train the promptable Hyper-
Free. To conquer this problem, we developed the Hyper-Seg
data engine, in addition to utilizing well-known multispec-
tral datasets (e.g., fMoW [5] and SpaceNet [50, 51, 59]).
This engine automatically generates a large-scale annotated
HSI dataset, consisting of nearly 50,000 pairs of HSIs and
their corresponding segmentation masks. The original data
are sourced from AVIRIS airborne hyperspectral sensors,
with a spatial size of 512×512 pixels and 224 spectral chan-
nels spanning from 400 to 2500 nm at a 10 nm spectral reso-
lution. Unlike other RSFMs trained on unannotated satellite
hyperspectral imagery with a 30m spatial resolution [54],
the Hyper-Seg data engine features higher spatial resolu-
tion (0.6 to 5.0 m), along with annotations of 15.44 mil-
lion masks. It is currently the largest known hyperspectral
dataset with high spatial resolution.

To demonstrate the model capabilities, we evaluated Hy-
perFree directly in a P-E manner on 11 datasets across 5
segmentation-related tasks, including multi-class classifica-
tion [21], one-class classification [66], target detection [65],
anomaly detection [47], and change detection [26]. Ad-
ditionally, we verified HyperFree in a P-T manner on 14
datasets spanning 8 tasks, with additional tasks including
hyperspectral denoising [27], hyperspectral unmixing [37],
and hyperspectral object tracking [61]. The experimental
results show that HyperFree achieves comparable accuracy
to state-of-the-art models in a tuning-free manner (using
just one prompt), and outperforms most models after tun-
ing.

Our contributions can be summarized as:
• We propose the first tuning-free hyperspectral foundation

model, which can process any hyperspectral image in dif-
ferent tasks with promptable or zero-shot manner.

• A weight dictionary that spans the full spectrum, enabling
dynamic generation of the embedding layer dynamically
according to input wavelengths.

• We propose to map both prompts and masks into fea-
ture space to identify multiple semantic-aware masks for
one prompt, where different interaction workflows are de-
signed for each downstream tasks.

• We built the Hyper-Seg data engine to train the HyperFree
model and tested it on 11 datasets from 5 tasks in tuning-
free manner, 14 datasets from 8 tasks in tuning manner as
an extensive experiment.

2. Related Work
Hyperspectral image processing. There are diverse tasks
to process such precise observation with different targets



[31]. (a) Classification: Assigning a specific class to each
pixel [21]. (b) One class classification: Discriminating the
pixels of target class with labeled binary map [33]. (c) Tar-
get detection. Discriminating the pixels of target class with
labeled spectrum. (d) Anomaly detection. Discriminating
the pixels spectrally deviating from the background [24].
(e) Change detection: Discriminating the changing pixels
between two time-steps [26]. Since the output of the above
tasks is all pixel-level segmentation maps, it is feasible to
unify them using the proposed HyperFree model in tuning-
free manner.

Foundation models. Powered by the transformer archi-
tectures, foundation models are characterized by large-scale
property in model size and pre-training data, and the trans-
ferring ability for downstream tasks [60]. In remote sens-
ing community, some foundation models for multi-spectral
images have already been proposed such as SatMAE [7],
SepctralEarth [1] and SpectralGPT [13], which trains large
ViT-like models [9] with the MAE strategy [12] and mas-
sive open-source multi-spectral images (13 channels). In
contrast, hyperspectral images have a high acquiring cost
[56] and make the large-scale pre-training stage more diffi-
cult. A recent study broke the situation by building a large-
scale hyperspectral dataset HyperGlobal-450K and trained
a foundation model called HyperSigma with MAE strategy
as well [54]. Our work differs from HyperSigma in two as-
pects: (i) HyperSigma accepts fixed number of image chan-
nels, while HyperFree can deal with any number of chan-
nels directly. (ii) HyperSigma needs to be fine-tuned for
each downstream task. Differently, HyperFree has ability
to process different tasks in fine-tuning free manner.

Prompt engineering (P-E). Different from the pre-
training and then fine-tuning paradigm, P-E can utilize pre-
trained foundation models to complete downstream tasks
directly with prompts [34]. For pre-trained large language
models, prompts are mostly hand-crafted text to guide the
model generate response for specific task [34, 42]. In com-
puter vison community, SAM follows the same spirit and
designs diverse prompts (e.g., point and box) to achieve
few-shot transferring performance [17]. Our work extends
the visual prompt engineering in hyperspectral data with
varying image channels and supports five tasks in tuning-
free manner with designed prompt-mask-feature interac-
tion.

3. Hyper-Seg Data Engine
Hyperspectral image processing always refers to various
dense tasks and a large-scale segmentation dataset is needed
to apply the P-E. However, most hyperspectral segmenta-
tion datasets only have a few images due to the high ac-
quisition and label cost, which is quite different from the
million-scale dataset with natural images such as SA-1B

[17]. To tackle this, we built a data engine called Hyper-
Seg to generate segmented masks automatically for spectral
images and expand the data scale. Hyper-Seg engine firstly
separates the spectral image into several groups with three
channels according to the prior of key channels position.
Each group is then segmented by the SAM-H model [17]
and the results are combined by NMS operation to eliminate
redundance and output the final segmentation map. Figure 2
shows the overall workflow, where the nine key channels are
selected according to the expert knowledge as in Supp.1.1.
Considering the high spatial resolution property of airborne
platform, we collected 41946 hyperspectral images from
AVIRIS airborne sensor and applied the Hyper-Seg En-
gine. Besides, we also processed two existing multispectral
datasets (fMoW [5] and SpaceNet [50, 51, 59]) to increase
the scale further. Compared to the traditional hyperspectral
annotation methods which refer to high-resolution RGB im-
agery, our data engine can utilize more spectral information
and obtain a high-precision segmentation mask without la-
bor cost.

Table 1 shows the comparable statistical information of
training datasets between existing RSFMs and proposed
HyperFree. Most models only concentrate on the RGB
and multispectral images with channel number 3∼13. Al-
though the recent model HyperSigma [54] has collected
a large-scale hyperspectral images, the spatial resolution
(30m/pixel) is largely lower than us (0.6∼5m/pixel), and the
dataset scale (considering image size and number together)
is relatively small. With the designed Hyper-Seg data en-
gine, constructed dataset is the only one with segmentation
masks supporting the promptable training. More detailed
statistical information of our generated dataset is given in
Supp.1.2. The final generated dataset has nearly 150k im-
ages and 15.44milion masks. We name both the data engine
and generated dataset as the Hyper-Seg for simplicity.

4. HyperFree Foundation Model
HyperFree has two customed components upon the meta-
architecture of SAM including channel-adaptive embedding
and prompt-mask-feature (PMF) interaction as in Figure
3. Channel-adaptive embedding constructs the embedding
layer dynamically according to varying input wavelength,
and outputs tokens in same representation space. After the
promptable training stage, PMF interaction discriminates
the semantic-aware masks for downstream tasks by map-
ping both prompt and mask into feature space and treating
feature distance as semantic similarity.

4.1. Channel-adaptive Embedding
To make HyperFree process any hyperspectral image,
channel-adaptive embedding layer is firstly designed to map
input image with varying channels into tokens with fixed
length, inspired by the tokenizer in NLP community [32].
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Figure 2. Hyper-Seg Data Engine automatically generates a large-scale dataset comprising nearly 41,900 pairs of airborne HSIs and their
corresponding segmentation masks, enabling HyperFree to effectively learn discriminative spectral features.

Table 1. Comparison of training data used in current RSFMs. The primary features of the proposed HyperFree model include prompt
engineering and the use of high-resolution annotated hyperspectral (HRS) imagery.

Dataset Foundation
Model

Spatial
Resolution (m)

Spectral
Resolution (nm)

Channel
Number

Image
Size

Image
Number

Main
Modality

Training
Paradigm

RGB
RVSA [53] 0.5 ∼ 153 \ 3 110 ∼ 31672 1.00× 106 H/M/LSR-RGB P-T

RingMo [48] 0.1 ∼ 30 \ 3 448 2.10× 106 H/MSR-RGB P-T

ScaleMAE [39] 0.31 ∼ 3.7 \ 3 \ 3.64× 106 HSR-RGB P-T

Multispectral
SatMAE [6] 10 15 ∼ 180 13 ≈ 45× 60 7.13× 105 MSR-M P-T

SkySense [11] 10/20 15 ∼ 180 10 \ \ MSR-M P-T

SpectralGPT [14] 10/20/60 15 ∼ 180 12 45 ∼ 120 1.47× 106 MSR-M P-T

Hyperspectral
HyperSigma [54] 30 5/6.5/10 150/175 64 4.47× 105 LSR-H P-T

HyperFree 0.6 ∼ 5.0 10 224 512 4.19× 104 HSR-H P-E

* P-T: Pretraining and Tuning; P-E: Prompt Engineering.
* HSR: High Spatial Resolution; MSR: Medium Spatial Resolution; LSR: Low Spatial Resolution.
* RGB: Red-Green-Blue Imagery; M: Multispectral Imagery; H: Hyperspectral Imagery

Tokenizers rely on a pre-defined dictionary to break down
a string of text into numerical tokens, where the dictionary
has stored the numerical vectors of varied-length words or
phrases. Vision transformers always use a convolutional
layer to generate patch tokens and what if we construct
a layer weight dictionary treating each wavelength as a
word? Given the input meta data of wavelengths, we can
just loop up the corresponding weights and construct the
layer dynamically without re-training it.

The weight dictionary is built depending on the wave-
lengths to be processed and the expected token dimension.
Since hyperspectral imaging mostly captures the spectral
signals from 400nm to 2500nm and the 10nm is of high
spectral resolution currently, 221 index channels are de-
signed as the dictionary keys. Denote the output token as a
vector of Rj corresponding to the patch size p× p, each in-
dex channel stores a weight matrix of size Rp×p×j , and the
built dictionary β has a size of 221 × p × p × j. Given the
input hyperspectral image Rh×w×n with wavelengths b =

[b1, b2, . . . , bn], the corresponding kernel weight can be dy-
namically generated by combining the searched weight W
with size n× p× p× j, where n is flexible for each image.
For conciseness, we use function g to represent the map-
ping process from b to W as kernel weight, and function f
to represent the token generation step as in Equation (1).

f(X | b, β) = ConvW(X) where W = g(b, β) (1)

In the past few decades, many satellites have been
launched equipped with spectral sensors, where the key
channels are selected by professional teams and practical
experience. To utilize these successful priors, we further
extract visual tokens in two parallel branches with dynam-
ically constructed layers: one to process key channels and
the other to process the split cubes, as shown in Figure 3.
The input image X is first divided into key channels Xk and
the cubes Xc between them, where the key wavelengths are
selected by referring to famous spectral sensors (detailed
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Figure 3. (a) Full spectrum Promptable Training. Based on the meta-architecture of promptable segmentation, channel-adaptive embedding
layer is developed to process any-channel input, which relies on a learnable weight dictionary and generates the embedding layer dynam-
ically according to the input wavelengths. With the constructed Hyper-Seg dataset, HyperFree is trained with randomly selected channels
from full spectrum and point prompts in each iteration. (b) Prompt-mask-feature Interactive Inferring. Keep the trained HyperFree frozen,
different PMF interaction workflows are designed to complete the downstream tasks in promptable or zero-shot manner, where we use
feature distance to measure the semantic consistency. An interaction instantiation for classification task is given above as an example.

in Supp.2). We set two different dictionaries βk and βc to
process Xk and Xc respectively, and the final output to-
kens T ∈ R(h/p)×(w/p)×j are computed as the element-
wise sum, as shown in Equation (2).

T = f(Xk|bk, βk) + f(Xc|bc, βc) (2)

4.2. Full-spectrum Promptable Training
The prompt engineering paradigm is adopted to complete
downstream tasks directly with designed prompts. Hyper-
Free is thus trained in a promptable manner on constructed
large-scale Hyper-Seg dataset, where the prompts are ran-
domly chosen at each iteration and the model is expected
to segment correctly the corresponding masks. Since hy-
perspectral image processing tasks are almost conducted at
the pixel level, we choose point prompts only at the training
stage. Focal loss Lf and Dice loss Ld are weighted as [17]
to supervise the training as Equation (3).

L = 20Lf + Ld (3)

To train the channel-adaptive embedding layer effec-
tively, we select the subset of channels randomly from
the full-spectrum range and process it with corresponding
weights only in βk and βc, which helps the learned dictio-
nary being wavelength-aware and encode the varied channel
composition into a unified token space.

4.3. Prompt-mask-feature (PMF) Interactive Inferring

After training process, the model can process unseen hyper-
spectral image with varied channels and segment the cor-
responding mask given any point prompt. However, many
downstream tasks need to segment out all the masks of same
semantic category rather than a single mask such as hyper-
spectral classification and target detection. We tackle this
problem by connecting the prompt, mask and feature to-
gether in feature space, where prompt tells the model an ob-
ject reference in task, mask outputs accurate location infor-
mation, and feature reflects semantic information. In uni-
fied feature space, the cosine distance of features is used to
measure the semantic similarity.

Before diving into the specific workflows, we introduce
two basic interaction modes with a simple situation. Set one
point (x, y) as input prompt for image X, the corresponding
feature cube D and all the generated masks M ∈ Rh×w×k

from the trained model, where M has k binary maps and
each represents a single mask. The first interaction mode
maps the prompt (x, y) into a feature vector d(x,y) ∈ Rj as
in Equation (4), where the corresponding valid and small-
est mask in M is used to localize the features in D, and the
mean feature is treated as d(x,y) for the given prompt. This
interaction transforms the prompt from image space to fea-
ture space, and makes it possible to explore the semantic



similarity.

Mode 1: (x, y)|M,D −→ d(x,y) (4)

The second interaction mode selects multiple the masks
in M, which have similar semantic information with d(x,y)

as in Equation (5). The selected masks are represented as
Md and Md ⊆ M. Specifically, we compute a feature repre-
sentation for each single mask by localizing in D and com-
puting the average, and the cosine similarity between them
and d(x,y) are treated as the semantic similarity. With some
hand-designed thresholds τ , Md can be finally segmented.
τ represents different meanings according to the specific
task.

Mode 2: (d(x,y)|M,D, τ) → Md (5)

By using both interaction modes adaptively, five hyper-
spectral tasks can be completed with the trained promptable
model directly. (a) Hyperspectral classification (HC).
Each category needs at least one prompt, and uses Mode 1
and Mode 2 in turn for each category. For a common closed-
set setting, τ is not necessary since we can use the minimum
feature distance between each mask representation and all
the prompt representations to decide its category. Figure
3 (b) shows an exemplified workflow. (b) Hyperspectral
one-class classification (HOCC). HOCC is similar to HC,
but the difference lies in that HOCC only needs prompts of
the target category, and its τ is instantiated as a class prior
parameter to control the mask ratio. (c) Hyperspectral tar-
get detection (HTD). Compared to HOCC, HTD accepts
the target spectra and it needs to be changed to a prompt
by selecting the pixel with the smallest cosine distance. τ
is instantiated as a distance threshold to convert the density
map to a binary map. (d) Hyperspectral anomaly detec-
tion (HAD). HAD is an unsupervised task and there is no
d(x,y) for HAD. Since HAD is very similar to unsupervised
target detection, we use M only and filter out large objects
according to mask area to output the final anomaly map. (e)
Hyperspectral change detection (HCD). Different from
the prior tasks, HCD accepts two registered and temporal
images to identify the changing locations. The HCD task
utilizes both interaction modes for the bi-temporal images.
Mode 1 processes the first image to get representation d(x,y)

Table 2. Instantiation summary of prompts, meaning of τ , and
interaction modes when HyperFree performs different tasks.

Task Prompt
Type Hyperparameter τ

Interaction
Mode

HC One Point Per Categories No τ Mode 1, Mode 2

HOCC Target Category Point Class Prior Mode 1, Mode 2

HTD Target Spectra Similarity Threshold Mode 1, Mode 2

HAD No Prompt Masks Area Threshold Mode 1

HCD No Prompt Similarity Threshold Mode 1, Mode 2

Task 1
(HC)

ABU-Beach 2 
(193 channels)

GT TDD [20] HyperFree

HongHu 
(270 channels) 

GT T-HOneCls [66] HyperFree

LongKou 
(270 channels) 

GT MambaHSI [23] HyperFree

Hermiston
(154 channels)

GT SST-Former [57] HyperFree

Cri
(46 channels)

GT TSTTD [16] HyperFree

Task 2
(HOCC)

Task 3
(HTD)

Task 4
(HAD)

Task 5
(HCD)

Figure 4. Exemplified comparison results for five tuning-free
tasks.
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Figure 5. In tuning-free manner, HyperFree (1 prompt) can
achieve comparable results with specialized models (5 shots) on
5 tasks and 11 datasets.

for each mask, which is input to Mode 2 and compared with
the corresponding mask representation with M and D of the
second image. Once the temporal feature distance exceeds
the preset τ , a change is considered to have happened. The
interaction workflow is summarized in Table 2.

5. Results
5.1. Experimental Setup

We evaluate the proposed HyperFree on five downstream
hyperspectral tasks including HC, HOCC, HTD, HAD and



Table 3. Quantitative comparison results on five hyperspectral tasks, where blue numbers indicates the metric ranking of HyperFree.
Comparison methods were all trained on each dataset while HyperFree processed the datasets in tuning-free manner.

HC Task

LongKou (270 channels) HanChuan (274 channels)

Metrics
SVM

[30] (5 shot)
HybridSN

[41] (5 shot)
FCN

[52] (5 shot)
FPGA

[68] (5 shot)
SSFTT

[46] (5 shot)
MambaHSI
[23] (5 shot)

HyperFree
(1 prompt)

SVM
[30] (5 shot)

HybridSN
[41] (5 shot)

FCN
[52] (5 shot)

FPGA
[68] (5 shot)

SSFTT
[46] (5 shot)

MambaHSI
[23] (5 shot)

HyperFree
(1 prompt)

OA 82.77 48.78 86.67 91.18 89.66 92.65 93.39(1st) 52.68 47.75 55.55 71.47 64.86 73.33 75.47(1st)
AA 74.02 61.37 85.60 88.35 87.96 92.57 88.03(3rd) 47.76 46.17 59.72 72.09 61.22 69.33 62.35(2nd)
KA 78.04 35.72 82.30 88.66 87.95 90.00 91.41(1st) 46.85 41.31 50.18 67.58 59.65 69.10 71.56(1st)

HOCC Task

HongHu (270 channels) XiongAn (256 channels)

Metrics
OCSVM

[43] (5 shot)
nnPU

[18](5 shot)
BSVM

[33](5 shot)
PAN

[15](5 shot)
OC Loss

[67](5 shot)
T-HOneCls
[66](5 shot)

HyperFree
(1 prompt)

OCSVM
[43] (5 shot)

nnPU
[18](5 shot)

BSVM
[33](5 shot)

PAN
[15](5 shot)

OC Loss
[67](5 shot)

T-HOneCls
[66](5 shot)

HyperFree
(1 prompt)

F1 26.33 19.13 34.82 63.69 54.73 55.97 72.52(1st) 18.31 1.76 26.30 46.34 43.08 41.34 52.50(1st)
P 56.43 19.72 50.77 80.00 58.27 46.52 68.61(2nd) 39.83 2.85 23.82 47.13 47.50 32.87 68.21(1st)
R 24.02 18.58 45.29 64.27 54.34 92.35 78.06(2nd) 16.08 1.98 57.83 53.32 47.61 60.38 65.03(1st)

HTD Task

Airport (205 channels) Cri (46 channels)

Metrics
ACE

[19](1 shot)
CEM

[2](1 shot)
GLRT

[28](1 shot)
MF

[29](1 shot)
HTD-IRN

[44](1 shot)
TSTTD

[16](1 shot)
HyperFree
(1 prompt)

ACE
[19](1 shot)

CEM
[2](1 shot)

GLRT
[28](1 shot)

MF
[29](1 shot)

HTD-IRN
[44](1 shot)

TSTTD
[16](1 shot)

HyperFree
(1 prompt)

AUC(D,F) 0.9794 0.9603 0.9801 0.9916 0.9745 0.9929 0.9806(3rd) 0.9735 0.9893 0.9737 0.9891 0.9975 0.9987 0.9791(5th)
AUCODP 1.5853 1.2829 1.5798 1.6968 1.4484 1.6592 1.4667(6th) 1.2015 1.4506 1.2000 1.4575 1.3995 1.6103 1.4670(2nd)

HAD Task

Beach1 (188 channels) Beach2 (193 channels)

Metrics
RXD
[40]

CRD
[22]

ADLR
[36]

LRASR
[63]

Auto-AD
[55]

TDD
[20]

HyperFree
(zero shot)

RXD
[40]

CRD
[22]

ADLR
[36]

LRASR
[63]

Auto-AD
[55]

TDD
[20]

HyperFree
(zero shot)

AUC(D,F) 0.9815 0.9471 0.4515 0.7461 0.9574 0.9842 0.9730(3rd) 0.9090 0.8544 0.7976 0.8225 0.9485 0.9627 0.9566(2nd)
AUCODP 1.2557 0.9785 0.5610 0.8526 1.1273 1.1383 1.9191(1st) 1.0177 0.8670 0.9064 0.8280 1.0097 1.1688 1.8697(1st)

HCD Task

River (154 channels) Hermiston (198 channels)

Metrics
FC-EF

[8](5 shot)
FC-Sc

[8](5 shot)
FC-Sd

[8](5 shot)
ML-EDAN
[35](5 shot)

BIT
[3](5 shot)

SST-Former
[57](5 shot)

HyperFree
(zero shot)

FC-EF
[8](5 shot)

FC-Sc
[8](5 shot)

FC-Sd
[8](5 shot)

ML-EDAN
[35](5 shot)

BIT
[3](5 shot)

SST-Former
[57](5 shot)

HyperFree
(zero shot)

IoU 0.4168 0.4522 0.4534 0.3915 0.2126 0.4096 0.3649(6th) 0.3729 0.3776 0.4873 0.3252 0.5257 0.5361 0.5851(1st)
F1 0.5884 0.6228 0.6239 0.5628 0.3507 0.5812 0.5347(6th) 0.5432 0.5482 0.65.52 0.4908 0.6891 0.6980 0.7382(1st)

Table 4. Compared results with SAM using the identical PMF interaction workflows.

HC HOCC HTD HAD HCD
OA AA KA F1 Precision Recall AUC(D,F) AUCODP AUC(D,F) AUCODP F1 IoU

SAM+PMF Interaction 66.62 72.99 59.41 34.13 30.35 39.47 0.7979 1.1014 0.9615 1.8844 0.5996 0.4282
HyperFree 93.40 85.66 91.42 72.52 68.61 78.06 0.9791 1.4670 0.9566 1.8697 0.7382 0.5851

HCD tasks as in Section 4.3. A total of 11 datasets were
used in the evaluation (detailed in Supp.3), and each task
had six comparison methods, including both classical and
state-of-the-art ones. Since there is no method that can
directly complete all five tasks, all comparative methods
are tested after being trained on each dataset with five shots
per class, while the parameters of HyperFree are fixed for
all datasets with 1 prompt or zero-shot as in Table 2. We
use ViT-base as backbone to conduct the experiments.

HyperFree was trained on the constructed Hyper-Seg
dataset using 8 A100 GPUs for approximately 10 hours,
which was based on the meta-architecture and param-
eters of SAM. We use AdamW optimizer with initial
learning rate 8e-5 and batch size 16. To help learning
the channel-adaptive embedding, we randomly select
the image channels at each iteration and match it with
corresponding wavelengths. 16 masks and 1∼2 points per
mask are randomly selected for each input image to train

the promptable segmentation.
5.2. Main Results

Most tuning-free quantitative results are reported in Table 3
(1 dataset in supplement due to the space limit) and Figure
5. All the comparative methods are trained with 5 shot for
each class and HyperFree processes each dataset directly
without tuning. For HC, HOCC and HTD, only one point
prompt is provided for each class. HAD and HCD does not
need any prompt and deal with images in zero-shot manner.
Table 3 shows than HyperFree can surpass most of the spe-
cialized models with frozen parameters. On both HC and
HCD tasks, HyperFree even outperformed previous SOTA
results, including an improvement of about 12 points in F1
on HC and about 0.5 points in IoU on HCD task.

We performed qualitative comparison on five exempli-
fied images in Figure 4, where one SOTA model have been
visualized for each task comparison. Obviously, the result
maps of HyperFree are more complete and smoother than
the ones of specialized models. In HC, HOCC, HTD and



Table 5. Ablation results on the usage of the learned weight dictionary.

Correct
Wavelengths βk βc

HC HOCC HTD HAD HCD
OA AA KA F1 Precision Recall AUC(D,F) AUCODP AUC(D,F) AUCODP F1 IoU

✓ ✓ × 73.18 64.23 65.85 65.62 47.30 64.56 0.9767 1.4644 0.9488 1.8465 0.5793 0.4078
✓ × ✓ 66.63 71.52 59.44 63.62 58.61 78.44 0.9768 1.4640 0.9589 1.8768 0.7022 0.5411
× ✓ ✓ 75.25 38.98 66.44 57.30 64.09 54.83 0.9595 1.4273 0.9557 1.8678 0.6832 0.5188
✓ ✓ ✓ 93.40 85.66 91.42 72.52 68.61 78.06 0.9791 1.4670 0.9566 1.8697 0.7382 0.5851

(a) HyperSigma features (b) HyperFree features

Figure 6. t-SNE visualizations of HyperSigma [54] and HyperFree
features on WHU-Hi Longkou dataset. We randomly select 1000
pixels for each class.
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Figure 7. In tuning manner, HyperFree can achieve overall better
results with specialized models on 8 tasks and 14 datasets.

HAD tasks, HyperFree can generate basically the same re-
sult as GT, which are difficulty for existing models.

5.3. Analysis Studies

HyperFree vs SAM. Proposed prompt-mask-feature inter-
action strategy adapts the pre-trained HyperFree to various
downstream tasks. We applied the same strategy to SAM
to verify the effectiveness of training on hyperspectral im-
ages and reported the results in Table 4. The metrics on
most tasks have a decline of about 10∼30 points, implying
a failed processing. We realize it is not a fair comparison
and only use it to reflect the difference of hyperspectral data
processing.

HyperFree vs HyperSigma. HyperSigma is the only
open-sourced hyperspectral foundation model [54, 62],
which adopts the pre-training and tuning paradigm. Thus,
we cannot compare HyperFree with it in tuning-free set-

ting directly and compare the t-SNE visualization in Figure
6(a) and Figure 6(b). In contrast, proposed HyperFree has
a more compact intra-class distance obviously, supporting
the tuning-free workflow of PMF interaction.

Full-Spectrum Weight Dictionary. To verify stored
weights are wavelength-aware, we conducted related abla-
tion studies in Table 5. In HC, HOCC and HCD tasks, a
drop in accuracy of about 5∼40 points can be observed if
we shuffled the correct wavelength order randomly, show-
ing the wavelength-aware property of learned dictionary.
Besides, we proved the built two encoding branches with
dictionaries βk and βc can benifit each other effectively.

Tuning HyperFree. As an extensive experiment, we
have also tested the tuning performance of HyperFree on 8
tasks and 14 datasets in Figure 7, which further included hy-
perspectral denosing (HD) [27], object tracking (HOT) [61]
and unmxing (HU) tasks [37]. The tuning HyperFree has
surpassed the previous SOTA models on nearly all tasks.

More analysis. For more analytical experiments, please
see the supplementary material. (i) Supp.4.1: Complete
qualitative comparison of 11 datasets in tuning-free man-
ner. (ii) Supp.4.2: Complete quantitative and qualitative
comparison of 14 datasets in tuning manner. (iii) Supp.4.3:
Sensitivity analysis about prompt number, prompt location
and the hyperparameter τ .

6. Conclusion

Hyperspectral images can provide rich spectral informa-
tion and are widely used in resource monitoring and de-
fense fields. However, its unique properties increase the
difficulty of foundation model development such as varied-
length channels, high sensitivity to imaging conditions and
the acquirement difficulty, making the mainstream P-T be-
ing low cost-effectiveness due to the image-by-image tun-
ing. Our work tackles this problem by converting to adapt
the visual P-E [17]. Differently, we design a learnable
weight dictionary covering full-spectrum to generate the
channel-adaptive embeddings and PMF interaction to gen-
erate semantic-aware masks for different tasks. We hope
HyperFree can speed up the era of “GPT moment” for hy-
perspectral intelligent processing.
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1. Hyper-Seg Data Engine

1.1. Wavelength Selection

To utilize the spectral information rather than only the RGB
channels, Hyper-Seg engine separates the original image
into 3 groups with different wavelength combination, where
we refer to the famous Landsat-8 satellite in Table 1. The
selected wavelengths represents the valuable practical ex-
perience and cover the overall range from 0.4 ∼ 2.5µm.

Table 1. Statistical results of classical multispectral satellites about
the selected wavelengths, supporting the wavelength selection of
Hyper-Seg data engine and the weight dictionary βk.

Satellite Central Wavelengths(nm)
Landsat-7 482.5, 565, 660, 825, 2220, 1650, 11450

Landsat-8
443, 482.5, 562.5, 655, 865,

1610, 1375, 2200, 10895, 12005

Sentinel-2A/2B
443, 490, 560, 665, 705, 740, 783,
842, 865, 945, 1375, 1610, 2190

WorldView-2/3 425, 480, 545, 605, 660, 725, 832.5, 950

ZY1-02D/E
486.5, 564.5, 662.5, 835.5,

434, 612, 730, 959
ZY-3 485, 555, 660, 830

RapidEye 455, 555, 655, 710, 805
PlanetScope 485, 545, 630, 820
GeoEye-1 480, 545, 672.5, 850
SPOT-6/7 485, 560, 655, 825

Pleiades-1A/B 490, 560, 650, 840
IRS-P6 555, 640, 815, 1625

KOMPSAT-2/3/4 485, 560, 660, 830
GF-1/2 485, 555, 660, 830
GF-4 485, 560, 660, 830, 3800
GF-6 485, 555, 660, 830, 720, 750, 425, 610

1.2. Statistical Information

Figure 1 reports the statistical information of constructed
Hyper-Seg dataset. With the non-maximum suppression
(NMS) operation, the number of final combined masks is
approximately 2 to 3 times the number of masks for each
group separately as in Figure 1 (a), indicating that Spectral-
Seg can utilize the spectral information effectively. From
Figure 1 (b) and Figure 1 (c), it can be observed that the
number density of generated masks in the three source
datasets is roughly equivalent and the small masks domi-
nate the dataset, increasing the segmentation difficulty.

2. Selection of Key Channels in Weight Dictio-
nary

In proposed channel-adaptive embedding layer, we design
a sperate branch for processing key channels, which are set
according to the successful prior of launched satellites in
Table 1. Each wavelength in Table 1 is selected by expert
knowledge. To merge the wavelengths that almost overlap
between different satellites, we sort all the wavelengths first,
take the average of every two adjacent wavelengths with
interval less than 10nm (common spectral resolution) and
substitute them. Combining with the longest wavelength
2500nm, a total of 85 wavelengths were selected to build
the learnable dictionary βk.

3. Overview of Experimental Datasets
All the used public datasets are summarized in Table 2,
which have different channel numbers and spectral ranges.
We have tested both the tuning-free manner and tunning
manner in five tasks including HC, HOCC, HTD, HAD and
HCD. Due to the different output formats, only tuning man-
ner is applied on HD, HU and HOT tasks.

Table 2. Summary of used public datasets on the eight tasks.

Tasks Datasets Number of
Channels

Spectral
Range (nm)

HC
LongKou [55]
HanChuan [55]
HongHu [55]

270
274
270

400 ∼ 1000
400 ∼ 1000
400 ∼ 1000

HOCC
HongHu [55]
XiongAn [50]

270
256

400 ∼ 1000
390 ∼ 1000

HTD
Airport [2]

Cri [51]
205
46

400 ∼ 2500
650 ∼ 1100

HAD
Beach-1 [2]
Beach-2 [2]

188
193

430 ∼ 860
430 ∼ 860

HCD
Hermiston [12]

River [12]
154
198

\
400 ∼ 2500

HD Washington D.C. [3] 191 400 ∼ 2400

HU Urban [15] 162 400 ∼ 2500

HOT HOTC 2023 [1] 56 460 ∼ 960

4. Additional Experiments
4.1. Qualitative Results in Tuning-free Manner

Complete visualization results are shown for five tasks. (a)
Figure 3, 4 and 5 for HC task. (b) Figure 6 and 7 for HOCC
task . (c) Figure 9 and 8 for HTD task. (d) Figure 10 and 11
for HAD task. (e) Figure 12 and 13 for HCD task. With the
powerful segmentation ability and PMF interaction, Hyper-
Free can achieve the best visualization performance without

1



(a) (b) (c)

Figure 1. Some statistical information about the built large-scale Hyper-Seg dataset.

tuning compared to the specialized models training with 5
shots.

4.2. Quantitative and Qualitative Results With Tun-
ing

We have also tested the further tuning performance of Hy-
perFree as an extensive experiment. The tuned version is
denoted as HyperFree* for simplicity. The quantitative re-
sults are reported in Table 4 ∼ Table 11 for HC, HOCC,
HTD, HAD, HCD, HD, HU and HOT tasks, respectively.
For the five tasks supporting the tuning-free manner, the
qualitative results of HyperFree* are put together with re-
sults in Section 4.1. The qualitative results of HD, HU and
HOT tasks are shown in Figure 14, 15 and 16, respectively.
After tuning, HyperFree has achieved the best performance
in most datasets and tasks. Since HyperFree is proposed
mainly for tuning-free manner, we use the full-tuning set-
ting directly without using any advanced tuning methods.

Table 3. Execution time comparison with deep models on five
tuning-free tasks.

HC
SSFTT [41] MambaHSI [22] HyperFree

197.08s 429.86s 7.85s(1st)

HOCC
OC Loss [53] T-HOneCls [52] HyperFree

244.46s 344.48s 21.50s(1st)

HTD
HTD-IRN [40] TSTTD [14] HyperFree

25.05s 378.40s 9.85s(1st)

HAD
Auto-AD [43] TDD [18] HyperFree

78.81s 28.31s 11.72s(1st)

HCD
BIT [5] SST-Former [45] HyperFree
142.23s 116.05s 15.90s(1st)

4.3. Sensitivity Analysis

Prompt Number. In the five tuning-free tasks, HC and
HOCC need prompts of each category to generate the
semantic-aware results. We explored the relationship be-
tween model performance and the number of prompts as in
Figure 2. The mean and std of metrics are calculated for
each prompt number with 10 repeat experiments. We found
HyperFree is mostly insensitive to the prompt number in

Figure 2. Sensitivity analysis of the prompt number on the model
performance (HC and HOCC tasks).

both tasks and one prompt is good enough.
Hyperparameter τ . HyperFree completes five tasks di-

rectly with the PMF interaction, where the two interaction
modes are used adaptively with the hyperparameter τ . To
explore its sensitivity, we have varied it and reported the
corresponding results in Figure 17. HC task is not included
since it does not need any τ . Most tasks show a certain but
acceptable sensitivity to τ , where the HTD and HCD tasks
exhibit more variation. Despite this, the fluctuation range of
the metrics remains within an acceptable range of 0.1.

4.4. Execution Efficiency Comparison Experiments

Without the tuning process, HyperFree can reduce the pro-
cessing time by 1 ∼ 2 orders of magnitude compared to
other deep models as in Table 3.

2



Table 4. Quantitative comparison results on HC task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric
SVM [28]

(5 shot)
HybridSN [38]

(5 shot)
FullyContNet [42]

(5 shot)
FPGA [54]

(5 shot)
SSFTT [41]

(5 shot)
MambaHSI [22]

(5 shot)
HyperFree*

(5 shot)

LongKou [55]
OA 82.77 48.78 86.67 91.18 89.66 92.65 92.10(2nd)
AA 74.02 61.37 85.6 88.35 87.96 92.57 92.71(1st)
KA 78.04 35.72 82.3 88.66 87.95 90.00 89.85(2nd)

HanChuan [55]
OA 52.68 47.75 55.55 71.47 64.86 73.33 83.56(1st)
AA 47.76 46.17 59.72 72.09 61.22 69.33 82.21(1st)
KA 46.85 41.31 50.18 67.58 59.65 69.1 81.03(1st)

HongHu [55]
OA 52.89 31.22 55.84 80.55 64.31 78.96 81.65(1st)
AA 45.97 34.14 67.25 75.12 64.53 76.02 85.56(1st)
KA 45.47 24.51 49.67 75.74 57.79 73.29 77.58(1st)

LongKou
(270 channels) 

GT

HyperFreeMambaHSI [22]

SVM [28] HybridSN [38] FullyContNet [42]

FPGA [54] SSFTT [41] HyperFree*

Figure 3. Qualitative comparison results on LongKou dataset of HC task, where HyperFree* represents the tuning version.

HanChuan
(274 channels) 

GT HyperFreeMambaHSI [22]SVM [28] HybridSN [38] Fully-
-ContNet [42]

FPGA [54] SSFTT [41] HyperFree*

Figure 4. Qualitative comparison results on HanChuan dataset of HC task, where HyperFree* represents the tuning version.
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HongHu
(270 channels) 

GT SVM [28] HybridSN [38] FullyContNet [42]

HyperFreeMambaHSI [22]FPGA [54] SSFTT [41] HyperFree*

Figure 5. Qualitative comparison results on HongHu dataset of HC task, where HyperFree* represents the tuning version.

Table 5. Quantitative comparison results on HOCC task in tuning manner, where HyperFree* represents the tuning version and blue
numbers indicate the metric ranking.

Dataset Metric
OCSVM [39]

(5 shot)
nnPU [16]

(5 shot)
BSVM [33]

(5 shot)
PAN [13]
(5 shot)

OC Loss [53]
(5 shot)

T-HOneCls [52]
(5 shot)

HyperFree*
(5 shot)

HongHu [55]
F1 26.33 19.13 34.82 63.69 54.73 72.52 91.24(1st)
P 56.43 19.72 50.79 75.00 58.26 46.52 92.77(1st)
R 24.02 18.58 45.29 64.27 54.34 92.35 89.90(2nd)

XiongAn [50]
F1 18.31 1.76 26.30 46.34 43.08 41.34 66.89(1st)
P 39.83 2.85 23.82 47.13 47.50 32.87 61.94(1st)
R 16.08 1.98 57.83 53.32 47.61 60.38 75.74(1st)

Cotton

Rape

Chinese
cabbage

Tuber
mustard

Carrot
GT OCSVM [39] BSVM [33]nnPU [16] OCLoss [53]PAN [13] T-HOneCls [52] HyperFree HyperFree*HongHu

(270 channels) 

Figure 6. Qualitative comparison results on HongHu dataset of HOCC task, where HyperFree* represents the tuning version.
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Maple

Elm

Bare
ground

Vegetable
field

GT OCSVM [39] BSVM [33]nnPU [16] OCLoss [53]PAN [13] T-HOneCls [52] HyperFree HyperFree*XiongAn
(256 channels) 

Figure 7. Qualitative comparison results on XiongAn dataset of HOCC task, where HyperFree* represents the tuning version.

Table 6. Quantitative comparison results on HTD task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric
ACE [17]
(1 shot)

CEM [4]
(1 shot)

GLRT [26]
(1 shot)

MF [27]
(1 shot)

HTD-IRN [40]
(1 shot)

TSTTD [14]
(1 shot)

HyperFree*
(1 shot)

Airport [2]
AUC(D,F) 0.9794 0.9603 0.9801 0.9916 0.9745 0.9929 0.9937(1st)
AUCODP 1.5853 1.2829 1.5798 1.6968 1.4484 1.6592 1.5945(3rd)

Cri [51]
AUC(D,F) 0.9735 0.9893 0.9737 0.9891 0.9975 0.9987 0.9976(2nd)
AUCODP 1.2015 1.4506 1.2 1.4575 1.3995 1.6103 1.4821(2nd)

Airport
(205 channels)

HTD-IRN [40] HyperFreeTSTTD [14]MF [27]

GLRT [26]CEM [4]GT ACE [17]

HyperFree*

Figure 8. Qualitative comparison results on Airport-4 dataset of HTD task, where HyperFree* represents the tuning version.

Table 7. Quantitative comparison results on HAD task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric RXD [37] CRD[20] ADLR [36] LRASR [49] Auto-AD [43] TDD [18] HyperFree*

Beach-1 [2]
AUC(D,F) 0.9815 0.9471 0.4515 0.7461 0.9574 0.9842 0.9973(1st)
AUCODP 1.2557 0.9785 0.561 0.8526 1.1273 1.1383 1.7862(1st)

Beach-2 [2]
AUC(D,F) 0.909 0.8544 0.7976 0.8225 0.9485 0.9627 0.9715(1st)
AUCODP 1.0177 0.867 0.9064 0.828 1.0097 1.1688 1.3900(1st)
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Cri
(46 channels)

HTD-IRN [40] HyperFreeTSTTD [14]MF [27]

GLRT [26]CEM [4]GT ACE [17]

HyperFree*

Figure 9. Qualitative comparison results on Cri dataset of HTD task, where HyperFree* represents the tuning version.

Beach-1
(188 channels)

Auto-AD [43] HyperFreeTTD [18]LRASR [49]

ADLR [36]CRD [20]GT RXD [37]

HyperFree*

Figure 10. Qualitative comparison results on Beach-1 dataset of HAD task, where HyperFree* represents the tuning version.

Beach-2
(193 channels)

Auto-AD [43] HyperFreeTTD [18]LRASR [49]

ADLR [36]CRD [20]GT RXD [37]

HyperFree*

Figure 11. Qualitative comparison results on Beach-2 dataset of HAD task, where HyperFree* represents the tuning version.
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Table 8. Quantitative comparison results on HCD task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric
FC-EF [7]

(5 shot)
FC-Sc [7]
(5 shot)

FC-Sd [7]
(5 shot)

ML-EDAN [34]
(5 shot)

BIT [5]
(5 shot)

SST-Former [45]
(5 shot)

HyperFree*
(5 shot)

Hermiston [12]
IoU 37.29 37.76 48.73 32.52 52.57 53.61 61.58(1st)
F1 54.32 54.82 65.52 49.08 68.91 69.8 76.22(1st)

River [12]
IoU 41.68 45.22 45.34 39.15 21.26 40.96 47.16(1st)
F1 58.84 62.28 62.39 56.28 35.07 58.12 64.09(1st)

HyperFree*BIT [5]ML-EDAN [34] SST-Former [45] HyperFree

FC-Sd [7]River
(198 channels)

FC-EF [7] FC-Sc [7]GT

Figure 12. Qualitative comparison results on River dataset of HCD task, where HyperFree* represents the tuning version.

Hermiston
(154 channels)

HyperFree*BIT [5]ML-EDAN [34] SST-Former [45] HyperFree

FC-Sd [7]FC-EF [7] FC-Sc [7]GT

Figure 13. Qualitative comparison results on Hermiston dataset of HCD task, where HyperFree* represents the tuning version.
Table 9. Quantitative comparison results on HD task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metrics NGMee [9] LRTFL0 [47] E-3DTV [32] QRNN3D [46] DS2DP[29] SST [19] HyperFree*

Washington D.C. [3]
PSNR 23.89 25.58 25.97 27.79 27.31 28.1 28.49(1st)
SSIM 0.872 0.907 0.921 0.945 0.937 0.989 0.990(1st)

SAM(°) 14.89 11.35 8.772 7.563 7.735 6.343 6.251(1st)
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HyperFree*

Noise image E-2DTV [32]LRTFL0 [47]NGMeet [9]GT

SSTQRNN3D [46]DS2DP [29

Figure 14. Qualitative comparison results on Washington D.C. dataset of HD task, where HyperFree* represents the tuning version.

Table 10. Quantitative comparison results on HU task in tuning manner, where HyperFree* represents the tuning version and blue numbers
indicate the metric ranking.

Dataset Metric VCA-FCLS [10, 30] SGSNMF [44] uDAS [35] CNNAEU [31] CyCU-Net [8] GSUU [6] HyperFree*

Urban [15]
SAD 0.3859 0.4442 0.6498 0.5364 0.2750 0.1645 0.0446(1st)

RMSE 0.1061 0.0973 0.1009 0.0392 0.1597 0.1188 0.0170(1st)

Asphalt

Grass

Tree

Roof

VCA-FCLS [10, 30] SGSNMF [44] uDAS [35] CNNAEU [31] CyCU-Net [8] GSUU [6] HyperFree*GT

Figure 15. Qualitative comparison results on Urban dataset of HU task, where HyperFree* represents the tuning version.
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Table 11. Quantitative comparison results on HOT task in tuning manner, where HyperFree* represents the tuning version and blue
numbers indicate the metric ranking.

Data Metrics BAENet [23] MHT [48] SiamHYPER [25] SEE-Net [24] SiamBAG [21] TSCFW [11] HyperFree*

HOTC 2023 [1]
AUC 0.496 0.465 0.564 0.499 0.508 0.476 0.576(1st)
DP 0.757 0.733 0.778 0.737 0.736 0.708 0.796(1st)
FPS 0.8 0.5 29.8 16.8 14.1 4.1 16.4(3rd)

Name: VIS_Coke Attributes: BC, IPR, OPR, FM, SV Name: NIR_Car59    Attributes: OCC, SV, FM Name: RedNIR_Dice2    Attributes: LR, BC, OCC

Figure 16. Qualitative comparison results on HOCT 2023 dataset of HOT task, where HyperFree* represents the tuning version.

(a) HTD on Cri Dataset (b) HAD on Beanch Dataset

(c) HCD on Hermiston Dataset (d) HOCC on HongHu Dataset

Figure 17. Sensitivity analysis of the hyperparameter τ on the model performance.
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