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Abstract

The multi-modality remote sensing foundation model (MM-
RSFM) has made notable progress recently. However, most
existing approaches remain limited to medium-resolution,
single-modality, restricting their performance in fine-grained
downstream applications such as disaster response and ur-
ban planning. In this work, MaRS is proposed, a multi-
modality very-high-resolution (VHR) remote sensing foun-
dation model designed for cross-modality granularity in-
terpretation of complex scenes. To achieve this, a multi-
modality VHR SAR-optical dataset, MaRS-16M, is con-
structed through large-scale collection and semi-automated
processing, comprising over 16 million paired samples. Un-
like previous work, MaRS tackles two fundamental chal-
lenges in VHR SAR-optical self-supervised learning (SSL)
techniques. Cross-granularity contrastive learning (CGCL)
is introduced to alleviate alignment inconsistencies caused
by imaging differences, and meta-modality attention (MMA)
is designed to unify heterogeneous physical characteristics
across modalities. Compared to existing remote sensing foun-
dation models (RSFMs) and general vision foundation mod-
els (VFMs), MaRS performs better as a pre-trained backbone
across nine multi-modality VHR downstream tasks.

Code — https://rsidea.whu.edu.cn/mars.htm

Introduction
Foundation models have revolutionized natural language
processing and computer vision by enabling strong gen-
eralization across tasks via large-scale pretraining (Rad-
ford et al. 2021; Devlin et al. 2019; Oquab et al. 2023).
This paradigm is increasingly influencing remote sensing
(RS), where remote sensing foundation models (RSFMs)
promise to unify diverse earth observation tasks (Bastani
et al. 2023; Cong et al. 2022). Existing MM-RSFMs such
as Prithvi 2.0 (Jakubik et al. 2023; Szwarcman et al. 2024),
FlexiMo (Li et al. 2025), and SkySense V2 (Zhang et al.
2025) are predominantly trained in medium-resolution data
sets (e.g., Sentinel 1 / 2) or focus on single-modality in-
puts. Meanwhile, focusing on high-resolution foundation
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models remains limited to the optical modality, leaving the
high-resolution SAR modality unexplored (Sun et al. 2023),
which limits MM-RSFMs’ effectiveness in fine-grained ap-
plications requiring high spatial resolution and robust multi-
modality interpretation.

Remote sensing foundation models (RSFMs) capable of
interpreting VHR-SAR imagery are urgently needed in time-
sensitive and low-visibility scenarios, such as post-disaster
response (Chen et al. 2025; Gupta et al. 2019; Zheng et al.
2024). During critical windows (the first 24 to 48 hours fol-
lowing wildfires, floods, or earthquakes), optical imagery is
often obstructed by smoke, cloud cover, or night-time condi-
tions. At the same time, medium-resolution Sentinel-1 SAR
data lacks the spatial granularity needed for fine-grained in-
terpretation. However, existing RSFMs, trained mostly on
optical imagery and medium-resolution from Sentinel-1/2
and NAIP, cannot generalize to VHR-SAR modality, espe-
cially in cases where only VHR-SAR is available (Astruc
et al. 2024; Li et al. 2024a). Therefore, in this paper, we are
motivated to advance multi-modal high-resolution remote
sensing foundation model for fine-grained interpretation in
complex scenes.

To achieve this goal, we contribute from two key aspects:
First, we construct the MaRS-16M dataset by collecting
and semi-automatically processing large-scale VHR-optical
and VHR-SAR data from commercial remote sensing satel-
lite providers. Second, a novel MaRS model is trained and
evaluated on nine multi-modal VHR downstream tasks, as
shown in Figure 1.

In remote sensing, although several pioneering works
have leveraged contrastive learning to build multi-modal
foundation models using medium-resolution data (MM-
RSFMs) (Fuller, Millard, and Green 2023; Astruc et al.
2025), extending this paradigm to very-high-resolution
(VHR) remains highly challenging. Specifically, develop-
ing a multi-modal VHR remote sensing foundation model
faces two key challenges: 1) Imaging discrepancy: VHR-
SAR imagery is often affected by layover effects and speckle
noise, resulting in severe local distortions that make pixel-
level alignment with VHR-optical imagery challenging. 2)
Modal representation gap: High-resolution optical and SAR
images describe objects differently. Optical imagery cap-
tures texture, while SAR imagery reflects physical struc-
ture. This inherent difference leads to heterogeneous fea-
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Figure 1: MaRS-16M is a globally distributed dataset of paired VHR optical and SAR imagery. The MaRS foundation model,
pretrained on MaRS-16M, achieves state-of-the-art performance across nine VHR multi-modality tasks, demonstrating strong
generalization to complex real-world scenarios.

tures that are difficult to align or integrate. These challenges
motivate the design of MaRS, a cross-granularity and meta-
modality foundation model for VHR multi-modal remote
sensing. To address local discrepancies caused by imag-
ing differences, we propose Cross-Granularity Contrastive
Learning (CGCL), which performs cross-contrastive learn-
ing between patch-level and batch-level feature granulari-
ties. This design leverages global scene semantics to su-
pervise the representation learning of local regions. Mean-
while, meta-modality attention (MMA) is introduced, incor-
porating an alternating intra-modality and cross-modality at-
tention structure. This alternating design enables the Trans-
former to iteratively capture both modality-specific patterns
and cross-modal dependencies, facilitating the emergence of
a unified meta-modality representation. To validate the ef-
fectiveness of MaRS, we conducted extensive experiments
on 9 VHR multi-modal tasks, comparing them against ex-
isting foundation models and specialized task-specific ap-
proaches. We summarize the main contributions as follows.

• We construct the MaRS-16M dataset, a large-scale paired
VHR optical-SAR dataset comprising more than 16 mil-
lion globally distributed 0.3m SAR and RGB image
pairs. This dataset captures various land cover types, ur-
ban patterns, and disaster scenarios.

• We propose MaRS, a VHR multi-modal remote sens-
ing foundation model that combines Cross-Granularity
Contrastive Learning (CGCL) for local-global alignment
and Meta-Modality Attention (MMA) for bridging SAR-

optical heterogeneity through alternating attention de-
sign.

• We validate MaRS on nine VHR SAR-optical bench-
marks, achieving strong performance across diverse tasks
including cross-modal registration, cross-modal gen-
eration, land cover mapping under modality-missing,
damage assessment, multi-modal object extraction, and
change detection.

Related Work
Multi-modal Representation Learning
Multi-modal representation learning has attracted increasing
attention due to its potential to integrate complementary in-
formation from different modalities(Caron et al. 2021; Rad-
ford et al. 2021). These models typically adopt transformer-
based architectures and fall into two broad categories based
on their training objectives. The first category includes
masked image modeling (MIM) methods (He et al. 2022;
Xie et al. 2022), which learn to reconstruct missing image
patches in a self-supervised manner. These approaches cap-
ture rich semantic features by forcing the model to infer
global context from partial information. The second cate-
gory involves contrastive learning(Chen et al. 2020; Oquab
et al. 2023), which aligns representations of different views
or augmentations of the same image. More recently, hy-
brid methods have emerged that combine reconstruction and
contrastive signals (e.g., iBOT (Zhou et al. 2021), data2vec



Model Dataset Modality Size MM MM-VHR

RSFMs

Prithvi Prithvi S2 (10m) 1TB ✗ ✗
RingMo RingMo GF2 (0.8m) 2M ✗ ✗
SatMAE++ fMoW + S2 S2 (10m) 883K ✗ ✗
Satlas Satlas NAIP (0.5∼2m)/S2 (10m) 13M ✗ ✗
ScaleMAE fMoW-RGB S2 (10m) 363.6K ✗ ✗
CrossMAE fMoW-RGB S2 (10m) 363.6K ✗ ✗

MM-RSFMs

CROMA SSL4EO S1-S2 (10m) 250K ✗ ✗
DeCUR SSL4EO S1-S2 (10m) 250K ✓ ✗
USat Satlas NAIP (0.5-2m) - S2 (10m) 13M ✓ ✗
SkySense SkySense Optical (0.5m) - S1-S2 (10m) 21.5M ✓ ✗

DOFA GEO-Bench NAIP + Gaofen + S1 /
- S2 + EnMAP (1-30m) - ✗ ✗

OmniSat - NAIP (0.5-2m) - S1-S2 (10m) 300K ✓ ✗
SeaMo SSL4EO S1-S2 (10m) 250K ✓ ✗
AnySat - NAIP (0.5 2m) - S1-S2 (10m) - ✓ ✗

MaRS MaRS-16M Optical (0.35m)/
Umbra & Capella (0.35m) 16.8M ✓ ✓

Table 1: Comparison with existing Remote Sensing Foundation Models (RSFMs). S1/S2 denote Sentinel-1 and Sentinel-2.
MM: Multi-modality. MM-VHR: Multi-modality with very-high-resolution.

(Baevski et al. 2022)), aiming to integrate the strengths of
both paradigms. At the same time, recent advances are dom-
inated by vision transformers (ViT) (He et al. 2016; Woo
et al. 2023; Vaswani et al. 2017; Dosovitskiy et al. 2021)
and hierarchical variants (Liu et al. 2021, 2022), which sup-
port global receptive fields and multi-scale reasoning. Ad-
ditionally, pretraining frameworks (Radford et al. 2021; Li
et al. 2021) have pushed the boundary further by align-
ing visual and language modalities at scale, inspiring many
cross-modal extensions. However, most of these models are
trained on web-scale natural image datasets (Deng et al.
2009; Schuhmann et al. 2022)) and struggle to generalize
to domain-specific modalities like SAR, which exhibit fun-
damentally different signal characteristics and structural pri-
ors.

Multi-modal Remote Sensing Foundation Model
Adapting foundation model techniques to remote sensing
has recently gained attention, with most existing work focus-
ing on either optical imagery or medium-resolution optical
and SAR data (Jakubik et al. 2023; Guo et al. 2024). In the
single-modal optical domain, models such as Prithvi (Szwar-
cman et al. 2024), SatMAE (Cong et al. 2022; Noman et al.
2024), and Scale-MAE (Reed et al. 2023) leverage large-
scale optical imagery (e.g., Sentinel-2, NAIP) using masked
autoencoding or contrastive pretraining. These models often
use ViT backbones and perform strongly on tasks like land
cover classification and segmentation. However, they are
typically restricted to medium resolution imagery (10–30m)
and lack adaptability to SAR-specific tasks. In the multi-
modal domain, works like CROMA (Fuller, Millard, and
Green 2023), SeaMo (Li et al. 2024a), AnySat (Astruc et al.
2024), and USat (Irvin et al. 2023) extend self-supervised
learning to SAR-RGB pairs. For instance, CROMA and
SeaMo use contrastive learning across Sentinel-1/2 image
pairs (10m), while USat incorporates NAIP (0.5–2m) and
Sentinel-2 in a shared embedding space. Most of these mod-

Umbra Capella

Figure 2: Dataset Distribution. MaRS-16M is composed of
2 open-source SAR companies, Umbra & Capella.

els rely on coarsely aligned medium-resolution multi-modal
datasets (Wang et al. 2024), restricting their effectiveness in
fine-grained scenarios.

MaRS
MaRS-16M Dataset
To construct MaRS, we first collected 4,225 very-high-
resolution (VHR) SAR images from Umbra and Capella
Space, with acquisition dates up to December 30, 2024. Af-
ter manually filtering out images with severe geometric dis-
tortion or poor quality, we retrieved the corresponding VHR
optical images. To address the georeferencing misalignment
between VHR optical and VHR-SAR imagery, we devel-
oped a semi-automated preprocessing pipeline, which in-
cludes a registration checker, resampling, and image regis-
tration.

Finally, the MaRS-16M dataset contains 16,785,168
paired VHR optical and SAR image patches at a spatial
resolution of 0.35 meters, as shown in Figure 2. The SAR
modality uses the X-band with HH or VV polarization.
This dataset covers many land cover types, urban, and dis-
aster scenarios, providing dense, precisely-aligned supervi-
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Figure 3: Overview of the MaRS pretraining pipeline. The MaRS framework first encodes VHR optical and SAR images through
modality-specific encoders, followed by Cross-Granularity Contrastive Learning (CGCL) to enforce spatial consistency across
patches and batches. A Meta-Modality Attention Transformer is then applied to enhance intra- and meta-modality feature
representations. The model is jointly supervised by contrastive learning, masked image modeling, and continual pretraining.
The encoders are utilized for downstream tasks.

sion essential for robust cross-modal learning under geomet-
ric distortion and signal noise conditions. Compared to ex-
isting foundation model training datasets, MaRS is distin-
guished by three key characteristics: very-high spatial reso-
lution, precisely paired multi-modality (optical-SAR) data,
and significantly larger scale, as illustrated in Table 1.

Overview Architecture
Let the input paired VHR optical and SAR image patches
be denoted as χRGB ∈ RH×W×3 and χSAR ∈ RH×W×1, re-
spectively. MaRS adopts a dual-encoder architecture to ac-
commodate the distinct physical properties of optical and
SAR imagery. Specifically, the two modality-specific en-
coders ERGB and ESAR are both implemented using Swin
Transformer V2 (Liu et al. 2022), which extracts patch-
wise representations zRGB = ERGB(χ

RGB) and zSAR =
ESAR(χ

SAR). The encoded features are fed into the Meta
Modality Attention Transformer (MMA), followed by light
decoders DRGB and DSAR for dense prediction. Note that the
ERGB,ESAR,DRGB,DSAR are basic modules in masked im-
age modeling (MIM) (Xie et al. 2022). While the MMA is
newly proposed to use an alternating design to learn a uni-
fied meta-modality representation,as shown in Figure 3.

To pretrain MaRS effectively, we integrate three comple-
mentary self-supervised strategies. First, cross-granularity
contrastive learning (CGCL) between paired SAR and op-
tical representations using local and global feature granular-
ity alignment. Second, we incorporate masked image model-
ing objectives within each modality branch, encouraging the
encoders to model intra-modal spatial structure from par-
tially masked inputs. Finally, inspired by GFM (Mendieta
et al. 2023), we apply continued pretraining on Swin Trans-

former V2 backbones on the VHR-optical branch using our
VHR multi-modal dataset, which has proven especially ben-
eficial in enhancing optical representation quality and en-
abling downstream generalization.

Cross-Granularity Contrastive Learning
Contrastive learning has proven effective in aligning rep-
resentations across different modalities by pulling posi-
tive pairs closer and pushing negative pairs apart. This
paradigm has been widely applied in vision-language pre-
training frameworks such as CLIP (Radford et al. 2021)
and DINOv2 (Oquab et al. 2023), and recently extended to
remote sensing foundation models including SkySense V2
(Zhang et al. 2025) and OmniSat (Astruc et al. 2025), where
it facilitates SAR-optical representation alignment. How-
ever, two critical challenges emerge under the very-high-
resolution (VHR) condition. First, due to the sparse distribu-
tion of land-cover objects in VHR imagery, the overlap be-
tween modalities is often limited, making patch-level align-
ment difficult. Second, severe local distortions introduced by
SAR-specific effects, including speckle noise and geometric
deformation, degrade the information of local features, com-
promising the effectiveness of contrastive learning.

To address these issues, we propose Cross-Granularity
Contrastive Learning(CGCL), a hierarchical contrastive
framework that jointly leverages patch-level and image-level
features. The key idea is to use stable global semantics to
align local patches,as shown in Figure 4.

Formally, let ZRGB ∈ RB×N×D and ZSAR ∈ RB×N×D de-
note the patch tokens extracted from VHR-RGB and VHR-
SAR images, where B is the batch size, N is the number
of patch tokens, and D is the feature dimension. We define



Figure 4: Illustration of Cross-Granularity Contrastive
Learning (CGCL) enforces consistency between global-
local patches across modalities to solve the local distortion
problem.

three levels of contrastive objectives:
• Patch-to-Patch contrast: directly aligns local features

across modalities,
• Image-to-Image contrast: aligns mean patch features to

encourage global semantic consistency,
• Patch-to-Global contrast: performs hierarchical align-

ment by matching each patch to global context features
from the other modality.

The total CGCL loss is defined as a weighted combination:

LCGCL = α ·Lpatch +β ·Lglobal + γ ·Lcross (1)

where α , β , and γ denote the weights of each granularity
level. This cross-granularity design mitigates sensitivity to
local distortions and provides robust multi-modal alignment
for downstream high-resolution tasks.

Meta-Modality Attention
Inspired by the recent theoretical insights in meta-modality
fusion (Zheng et al. 2021), we introduce a modality-aware
attention mechanism tailored for dual-branch fusion in VHR
remote sensing. We aim to dynamically integrate modality-
specific and cross-modal cues while maintaining global co-
herence across spatially dense representations. To this end,
we design a dedicated transformer module, Meta-Modality
Attention (MMA), that interleaves two self-attention layers:
modality-wise and global.

Given the tokenized feature sequences from ERGB and
ESAR, denoted as ZRGB ∈RB×N×D and ZSAR ∈RB×N×D, the
MMA module concatenates them into a unified token stream
T = [ZRGB;ZSAR] ∈ RB×2N×D. The overall module consists
of L alternating layers, where each layer performs the fol-
lowing two-stage operation:
• Intra-Modality Attention: We first apply intra-modality

self-attention to TRGB and TSAR independently. This step
enables the model to capture modality-specific inductive
patterns, such as structural geometry in SAR and texture-
rich cues in optical imagery.

• Meta-Modality Attention: The full token sequence T
is then refined via self-attention across both modalities.
This layer promotes global interaction and facilitates in-
formation propagation between modalities.

These two operations alternate across L transformer
blocks. Repeating the interleaved update, the MMA trans-
former preserves modality-specific semantic representations
and bridges the modality gap through iterative alignment.
The final outputs from MMA are modality-specific en-
hanced features T out

RGB, T out
SAR ∈ RB×S×C, which are reshaped

back to the spatial domain by decoders. The entire process
can be formulated as follows.

Hintra(T l−1) = FMHA(T l−1
RGB)⊕FMHA(T l−1

SAR) (2)

Hmeta(T l−1) = FMHA(T l−1) (3)

T l =

{
Hintra(T l−1), if l mod 2 = 1
Hmeta(T l−1), if l mod 2 = 0

(4)

l ∈ L represent the l-th transformer block. FMHA(·) rep-
resents a standard Transformer block composed of a Layer
Normalization, a Multi-Head Self-Attention module, an
MLP feed-forward network, and residual connections.

Experiments
Pre-training Implementation
MaRS is pre-trained for 12 epochs with a batch size 16 per
GPU on 8 A800 GPUs, totaling 128 samples per iteration.
The training lasts for approximately 48 hours. Following re-
cent masked image modeling paradigms, we set the mask-
ing ratio to 60% and apply random horizontal flipping as
the primary data augmentation strategy. Each input image
is resized to 512×512 before being fed into the model. The
frozen teacher model is instantiated with the same archi-
tecture as the RGB encoder and provides pixel-wise guid-
ance for accelerating convergence and stabilizing training.
The experiments are conducted by fine-tuning a pretrained
MaRS backbone and task-specific architecture.

Performance on Multi-modal VHR Tasks
We evaluate the proposed MaRS on seven challenging
downstream tasks under complex, multi-modal, and very-
high-resolution (VHR) scenarios. The used benchmarks
cover a wide range of fine-grained urban and disaster per-
ception tasks. Specifically, GUSO contains 20,000 image
pairs of optical and SAR data from 441 global regions,
with 0.3m resolution and standardized into 512×512 patches
for cross-modality registration and translation evaluation.
EarthMiss comprises 3,355 pairs of 0.6m optical and SAR
images covering 13 cities across five continents, and is an-
notated with eight semantic categories to support modality-
miss land cover mapping. DFC25T2 (Chen et al. 2025) is the
first open-access, globally distributed, event-diverse dataset
for building damage assessment. SARDdet-100K (Li et al.
2024b) contains over 120,000 SAR image chips with bound-
ing box annotations for target detection. UBCv2 (Huang
et al. 2023) includes multi-modal rooftop and building in-
stance labels, and we only use the building detection anno-
tations in this work. DFC23T2 (Huang et al. 2022) provides
paired multi-modal imagery and height labels for building
height estimation in urban areas.

Quantitative and qualitative comparisons are shown in
Table 2 and Figure 5. Compared to VFM models trained



Registration Mapping Translation Damage SAR ATRDet Building Detection Height
GUSO EarthMiss GUSO DFC25T2 SARDet-100K UBCV2 DFC23T2

Model Backbone RMSE↓ NCM↑ mIoU↑ PSNR↑ SSIM↑ IoU↑ mAP↑ mAP75↑ mAP↑ mAP50↑ Delta↑

ResNet R50 - - 48.0 18.75 0.32 34.77 48.4 53.1 17.1 34.1 -
ViT ViT-L - - 48.7 17.13 0.27 37.00 - - - - 23.26
SwinV2 SwinV2-B 3.08 1788.5 49.6 16.71 0.22 36.82 53.5 58.7 26.0 44.7 23.38

DoFA DoFA-B - - 46.8 - - 37.59 - - - - 30.99
SatMAE ViT-L 3.52 1607.3 35.0 15.32 0.22 29.39 - - - - 14.19
ScaleMAE ViT-L 3.22 1688.5 35.1 15.72 0.22 - - - - - 7.11
GFM Swin-B - - 39.6 16.02 0.22 28.24 - - - - 21.60
CROMA CROMA-B - - 39.2 - - - - - - - 18.30
CrossMAE ViT-B 3.12 1786.5 39.4 15.63 0.22 29.49 - - - - 12.57
Prithvi PriV2-300M - - - 15.27 0.21 - - - - - 22.28
Satlas Swin-B - - - 15.72 0.21 37.06 - - - - 24.45
SSL4EO R50 - - - 18.99 0.34 - - - - - -

SuperGlue Semantic HFGAN SiamCRNN GridRCNN Cascade DFC23-B
3.91 36.19 48.66 18.934 0.310 35.57 51.5 56.3 16.5 26.9 30.10

XoFTR - - - - FCOS Mask+CGT Light
3.77 1019.23 - - - - 48.5 51.4 16.3 26.3 38.30

TopicFM - - - - Deform-DETR Cascade+CGT Light-G

Task-specific

4.27 21.07 - - - - 51.3 54.0 17.1 27.1 44.60

MaRS SwinV2-B 2.83 1836.9 49.9 20.69 0.44 41.49 55.4 61.4 26.8 45.9 54.04

Table 2: The multi-modality VHR downstream tasks results compared to existing foundation modal and task-specific methods.

on medium-resolution data, we observe that RSFM suf-
fers from severe performance drops across tasks, likely due
to a lack of fine-scale representation that limits general-
ization to complex VHR settings. Among VFM baselines,
DoFA achieves relatively strong results, which suggests the
importance of large model capacity and spectrum-adaptive
design. SwinV2 consistently outperforms ViT-based back-
bones, particularly in dense prediction tasks such as target
detection and height estimation, which confirms the neces-
sity of hierarchical multi-scale features. MaRS achieves the
best performance across six out of seven tasks, and even
outperforms several task-specific methods. The qualitative
results in Figure 5 highlight the visual advantages of MaRS,
especially in cross-modal translation, where fine-grained de-
tails like farmland and building edges are better recovered.

Performance on VHR-optical Tasks
In addition to multi-modal tasks, we further evaluate MaRS
on high-resolution optical tasks to assess its performance un-
der single-modal, fine-grained scenarios. WHU-CD (Ji, Wei,
and Lu 2019) is a building binary change detection dataset
with high-resolution (0.3 m) image pairs and pixel-wise an-
notations. DeepGlobe is a benchmark for road extraction
from VHR optical images with diverse global coverage and
fine road annotations.

As illustrated in Table 3, MaRS achieves a remarkable
IoU of 86.66 on WHU-CD, significantly outperforming
most vision foundation models. In comparison, ViT-based
models (e.g., ViT-L, SatMAE) fall behind due to their lim-
ited ability to capture spatially localized details. SwinV2-
based VFM models perform better, reflecting the advan-
tage of hierarchical features in dense prediction tasks. MaRS
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Figure 5: Visualization of the multi-modality VHR down-
stream tasks.

surpasses task-specific baselines like STANet and DASNet,
demonstrating its generalizability and fine-scale discrimi-
nation capacity even without task-specific tuning. On the
DeepGlobe road extraction benchmark, MaRS attains 68.14
IoU, again outperforming other VFMs and approaching the
recently task-specific performance.

Real-world Case Study on Los Angeles Fire
To validate the practical utility of MaRS in real-world dis-
aster response, we applied our framework to assess wild-
fire damage during the Los Angeles Hill Fire incident on
January 7, 2024. The imagery was collected by Umbra. As
shown in Figure 6, MaRS successfully aligns the multi-
modality images, reducing the original registration offset of



Change Det Road Extraction
WHU-CD (IoU↑) DeepGlobe (IoU↑)

ResNet R50 78.38 65.82
ViT ViT-L 72.44 56.51
SwinV2 SwinV2-B 86.66 68.14
DoFA DoFA-B 66.51 57.27
SatMAE ViT-L 65.60 28.01
ScaleMAE ViT-L 70.43 25.52
GFM Swin-B - 41.55
CROMA CROMA-B - 57.03
CrossMAE ViT-B 67.83 27.24
Prithvi PriV2-300M 72.80 46.47
Satlas Swin-B - 32.73
SSL4EO R50 49.70 29.13

STANet LinkNet
82.99 66.89

DASNet CoANet
84.42 66.75

USSFCNet Connectivity

Task-specific

85.96 67.21
MaRS SwinV2-B 87.02 68.44

Table 3: The VHR-optical downstream tasks results com-
pared to existing foundation and task-specific methods.

Registration Mapping SAR ATRDet Change Det
RMSE↓ mIoU↑ PSNR↑ IoU↑

BaseLine 2.835 42.0 53.5 67.1
+CGCL 2.795 49.1 53.8 76.0
+MMA 2.854 48.4 55.1 86.2
MaRS 2.831 49.9 55.4 87.0

Table 4: Ablation Study. The Baseline model adopts masked
image modeling (MIM) and standard dual-encoder con-
trastive learning, without specialized alignment or fusion
strategies.

over 100 pixels to within 10 pixels, thereby enabling pre-
cise pixel-level comparison. The damage assessment visual-
ization on the right highlights temporal structural changes,
revealing fine-grained damage patterns over 24 hours. This
global stability highlights the framework’s robustness to do-
main shifts, sensor types, and regional variations, making
MaRS a practical and scalable solution for real-world multi-
modal remote sensing applications.

Ablation Study
To understand the contributions of each component in our
framework, we conduct a systematic ablation study across
four representative VHR multi-modal tasks, as shown in
Table 4. The CGCL enhances the model’s capability for
fine-grained semantic interpretation by enforcing consis-
tent representations across spatial hierarchies. Meanwhile,
the MMA facilitates comprehensive cross-modal fusion by
explicitly modeling intra- and inter-modal dependencies.
When integrated, the complete MaRS model delivers consis-
tently superior performance across all tasks, validating the
effectiveness and complementarity of its components.

Registration

Origin 2025.01.09

(a) Cross-Registration results (b) Damage assessment results
Damage Building

Figure 6: The cross-modality registration and modality miss
building damage assessment of MaRS pretraining weights
on the Los Angeles Fire.

Image Swin-V2 MaRS

R
G
B

SA
R

Figure 7: Feature heatmap of the output feature representa-
tion from the final block of backbone.

Modality-Aware Feature Analysis

To further validate the advantages of MaRS in fine-grained
representation and modality alignment, we conduct a fea-
ture heatmap visualization experiment. Figure 7 shows that
MaRS produces sharper activations along object boundaries
and structural textures, indicating enhanced detail modeling
capabilities. Moreover, compared to SwinV2, which relies
on unimodal features, MaRS exhibits more consistent acti-
vation regions across RGB and SAR inputs, demonstrating
superior modality-invariant representation and fusion effec-
tiveness.

Conclusion
This paper introduces MaRS, a multi-modality remote sens-
ing foundation model pre-trained on MaRS-16M, a large-
scale, globally distributed dataset of paired VHR optical and
SAR imagery. MaRS employs a unified dual-branch back-
bone and two core strategies, Cross-Granularity Contrastive
Learning and the Meta-Modality Attention Transformer, to
jointly enhance fine-grained representation and modality fu-
sion. This design enables MaRS to generalize effectively
across diverse VHR tasks and achieve state-of-the-art per-
formance on nine challenging benchmarks, ranging from
registration and translation to change detection and build-
ing analysis. Beyond its strong benchmark results, MaRS
demonstrates real-world utility in complex disaster scenar-
ios such as damage assessment.
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